Donsker type theorem for fractional Poisson process

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Donsker-type Theorem for Bsdes

This paper is devoted to the proof of Donsker’s theorem for backward stochastic differential equations (BSDEs for short). The main objective is to give a simple method to discretize in time a BSDE. Our approach is based upon the notion of “convergence of filtrations” and covers the case of a (y, z)–dependent generator.

متن کامل

Fractional Poisson Process

For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...

متن کامل

Donsker type theorem for the Rosenblatt process and a binary market model

In this paper, we prove a Donsker type approximation theorem for the Rosenblatt process, which is a selfsimilar stochastic process exhibiting long range dependence. By using numerical results and simulated data, we show that this approximation performs very well. We use this result to construct a binary market model driven by this process and we show that the model admits arbitrage opportunitie...

متن کامل

Full characterization of the fractional Poisson process

The fractional Poisson process (FPP) is a counting process with independent and identically distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in several fields of applied and theoretical physics including models for anomalous diffusion. Contrary to the well-known Poisson process, the fractional Poisson process does not have stationary and indep...

متن کامل

Bishop-Phelps type Theorem for Normed Cones

In this paper the notion of  support points of convex sets  in  normed cones is introduced and it is shown that in a  continuous normed cone, under the appropriate conditions, the set of support points of a  bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2019

ISSN: 0167-7152

DOI: 10.1016/j.spl.2019.01.036